手机浏览器扫描二维码访问
……
“……你看,这样就是一个椭圆曲线了。不过不是一般的圆锥曲线中的椭圆,而是域上亏格为1的光滑射影曲线。如果特征不等于2的话,那么仿射方程就是y^2=x^3+ax^2+bx+c。
那个BSD猜想的前置条件你肯定还记得吧?复数域上的椭圆曲线为亏格为1的黎曼面,整体域上的椭圆曲线是有限生成交换群。阿贝尔簇是椭圆曲线的高维推广。
所以这个时候我感觉就要把椭圆曲线化成魏尔斯特拉斯形式。这是我看了很多相关理论之后才找到的方法。这种变形就属于很机械的操作,前提条件是方程至少存在一个有理数点。
但显然这一步是成立的,之前我们已经证明了,所以我们就能得到这两个公式……”
乔喻一边说,一边在小桌板上用笔写着。
兰杰则认真听着,脖子脖子伸得老长,去看乔喻的整体解题过程,以及随手用坐标系画出的平面图。
“……很显然,我们现在得到了一条有着两个实部的经典椭圆曲线。右边的线,明显是连续延伸至正负无穷,左边的封闭椭圆曲线就是求解的关键了,给定这个方程任意解,都可以用等式还原我们要求的数值。”
“这一步最关键的地方就在于三元组(a:b:c)必须是投影曲线,这才可以随便乘什么常数,都能让方程成立。接下来就要用到双向有理等价了,我就直接在这个椭圆曲线上找一个最方便求解的有理数点,再带入原方程,就能求出解了。
其实到了这一步就简单了,椭圆曲线理论中,弦切技巧是生成新的有理数点的关键工具嘛。只要在椭圆曲线上找到两个已知的有理数点:P1跟P2,就能通过加法生成新的有理数点。
接下来就是直接在构造切线了,这个时候就自然形成了一个阿贝尔群,我们要引入O这个群中的零元,根据规则,任何一个点P跟O相加时结果依然是P。
……我们再通过作P点的切线,找到P跟曲线再次相交的点,然后再计算,如果得不到整数解,就继续用连接P和2P找到与曲线的第三个交点再与O点相连找到第四个交点,不行就重复这个步骤找第五个交点……
总之就是重复这个步骤,一直到找到对应的整数解为止。不过这一步靠手算肯定不行了,只能用电脑来算,找到那个值后,再用几何程序进行迭代。
最后计算9P才是整数,然后就是用得到的9P的值,做9次几何程序迭代,最后就能得出上述这个方程a,b,c的值了。整个解题思路就是这样。”
……
乔喻一口气讲了整整一个小时,只觉得口干舌燥,讲完之后,直接拿出插在前面座椅背上的矿泉水,狠狠地灌了几口。才开问道:“咋样,兰老师,你觉得我这种解法有普适性吗?”
兰杰回过神来,看了一眼乔喻,没有第一时间回答。
毕竟要判断出这种解法有没有普适性,首先他得完全理解这种解法。
让乔喻讲解,是因为他本以为乔喻在解这个方程时,不会用到太过复杂的数论方面内容。毕竟乔喻给他的印象一直是有天赋,但并没有针对数学系统的学习过。
而他不一样,大学时候也是系统学过抽象代数,数论入门这些课程的,不至于听不懂。
但显然他错了。
听乔喻讲解的时,他甚至回想起大学那段青葱岁月,被高级代数几何所支配的恐惧。
什么射影几何,模空间是真的让人很头大。他拼了命学最后也只是勉强过关,拿到了学分。当然班上也有很多厉害的同学,随随便便学学就能拿满分的。
这也是他研究生阶段选择组合数学,毕业之后回到星城当了个高中数学老师的原因。
真不是他不想做科研,继续读博士,然后争取能在高校当老师。
主要还是能力有限,真读不动了。
所以他是真没完全听懂乔喻求解这个方程的思路。
众所周知,如果要判断数学上某个求解方法对一类方程是否具备普适性,首先得完全理解整个求解思路。
这就很尴尬了。
本以为凭借他在大学积累的数学知识,听完乔喻现场讲解之后,肯定能给出一个答案的。
但现在他需要在丢人跟想办法掩饰之间做出一个选择。
大概沉吟了十秒钟后,兰杰选择了坦诚。
因为他是真不太会装。
“乔喻,说实话,我的水平不够,没法判断……所以这个问题你只能自己去尝试了。找几个同类的方程,用你这种方法去求解,如果最后都能得出正确答案的话,就可以动笔写论文了。
论文具体怎么解决问题,我没办法帮你。但我可以教你论文具体该怎么写。毕竟数学论文的撰写是有着特定的格式跟行文要求的,也有一些常见的通用标准。”
我从无尽战场回来了 美食:随机任务,食客们都馋疯了 末世:别人求生,我肆意妄为 NBA:从折磨乔丹开始加点升级 异能团宠:顾总的小娇妻又野又呆 鹿蓁蓁柳璟琛 我把你当弟弟,你竟想娶我? 死镖 浮沉一世是清欢 玄魔之仙 拜师风灵月影,入世天下无敌 长城紫光 苏铮霓凰 军阀:有了系统崛起 我的超能力和恋爱都有大问题 执掌人生萧峥陈虹 小玫瑰太甜太撩,清冷总裁把持不住啦 季天侯厉元朗 诸天:万化纵游 安能摧眉折腰事权臣
公元878年,唐僖宗乾符五年。这一年,王仙芝战死黄梅,部众推黄巢为主,号冲天大将军,转战南方。这一年,李克用杀大同军使段文楚,父子二人发动叛乱,沙陀兵马抄掠河东。这一年,江南盗贼蜂起,连陷州郡。这一年,河南连岁旱蝗,军士作乱。这一年,僖宗斗鸡击球,不理朝政。这一年,大唐风雨飘摇。这一年,后世穿越而来的邵树德有自己的...
前世,真千金盛敏敏刚出生被恶意调包,过了12年牲口般的农女生活。12岁被接回盛府,亲生父母,3个嫡亲的哥哥无条件地偏宠假千金,最后盛敏敏跟自己刚出生的孩子被假千金活活烧死。今生,盛敏敏与亲生母亲互换身体,她决定以母亲的身份整死假千金,3个哥哥跟所有仇人盛敏敏心情不爽逆子,逆女,跪下!扑通几...
关于我有了空间戒指后,财富无限父母双亡的林震南继承了一家父亲遗留下来的二手书画店,无意之中,一只修炼万年蜘蛛,在雷电交加之时,元神最弱之时,被林震南一掌手拍碎本体,蜘蛛本命元神入体,机缘巧合下,林震南…传承了它的异能。后来更是得到了一枚上古超级空间戒指,空间更有一方小世界。后来林震南更是鉴宝,赌石,看相,看风水,修真,无一不精,一时喜从天降,富贵逼人!...
论穿越到甜宠文大结局后是一种什么体验?姜澜雪表示,这金手指压根没用。原身入宫三月,却从未见过宣宁帝,因此,后宫嫔妃压根没将她放在眼里。不曾想姜澜雪穿越第一日就被召侍寝了,对此,众人依旧摇摇头表示不用担心。哪知接下来一连三日,宣宁帝都流连在姜澜雪的清光殿中。对此,众人表示,这不可能,肯定是因为齐王妃的缘故,陛下定然是...
很显然,这是跳舞的又一套新书。也将会是跳舞在起点的第五套全本。(注意,这本书是都市YY,呵呵。几乎没有什么神话色彩,更不会再有什么教皇教会宗教圣骑士吸血鬼玉皇大帝之类的东西了)...
...